

Reg. No.:												
-----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: X 20442

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Third Semester

Electronics and Communication Engineering EC 6304 – ELECTRONIC CIRCUITS – I (Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART – A (10×2=20 Marks)

- 1. Why is the operating point selected at the Centre of the active region?
- 2. Define Stability factor.
- 3. What is the need of differential amplifier?
- 4. What is meant by bootstrapping?
- 5. Determine the output impedance of a JFET amplifier shown in Figure 3. Let $g_m = 2$ mA/V and $\lambda = 0$.

Figure 3

6. Compare between JFET and MOSFET amplifiers.

- 7. What is the reason for reduction in gain at lower and higher frequencies in case of amplifiers?
- 8. Determine the unity-gain bandwidth of a FET with parameters, C_{gd} = 10 fF, C_{gs} = 50 fF and g_{m} = 1.2 mA/V.
- 9. State the advantages of current steering circuit.
- 10. Define active load and list the types of active load.

11. a) i) The parameters for each transistor in the circuit in Figure-5, are $h_{\rm fe}$ = 100 and $V_{\rm BE_{on}}$ = 0.7V . Determine the Q-point values of base, collector and emitter currents in $Q_{\rm 1}$ and $Q_{\rm 2}$. (6)

Figure 5

ii) Determine the change in collector current produced in each bias referred to in Figures 6(a) and 6(b), when the circuit temperature raised from 25°C to 105°C and $I_{\text{CBO}} = 15$ nA @ 25°C . (7)

b) i) Determine the quiescent current and voltage values in a p-channel JFET circuit (Vide Figure-7). (4)

Figure 7

ii) The circuit in Figure 8, let h_{fe} = 100. (1) Find V_{TH} and R_{TH} for the base circuit. (2) Determine I_{CQ} and V_{CEQ} . (3) Draw the DC load line. (9)

Figure 8

12. a) Draw the a.c equivalent circuit of a CE amplifier with voltage divider bias and derive the expression for current gain, voltage gain, Input impedance, output admittance and overall current gain. (13)

(OR)

- b) Explain the operation of cascade amplifier and derive Voltage gain, overall input Resistance overall current gain and output impedance. (13)
- 13. a) i) Draw the small signal equivalent circuit of NMOS source follower. Also obtain the expression for the gain. (8)
 - ii) With relevant circuit diagram, explain cascode NMOS amplifier circuit. (5)

(OR)

b) Determine the small-signal voltage gain of a JFET amplifier. Consider the circuit shown in Figure 9 with transistor parameters : $I_{DSS} = 12$ mA, $V_p = -4$ V and $\lambda = 0.008$ V⁻¹. Also draw the Small-signal equivalent circuit of common source JFET, assuming bypass capacitor acts as a short circuit. (13)

14. a) With neat sketch explain hybrid π CE transistor model. Derive the expression for various components in terms of 'h' parameters.

(OR)

- b) Explain the high frequency analysis of JFET with necessary circuit diagram and gain bandwidth product.
- 15. a) Draw and explain the operation of a simple MOSFET amplifier with active load and derive its voltage gain using small-signal equivalent circuit.

(OR)

b) With necessary diagrams, explain the operation of a CMOS differential amplifier. Using small signal analysis, derive the expression for its voltage gain.

PART - C

(1×15=15 Marks)

16. a) Design the circuit given below such that $I_{\rm DQ}$ = 100 $\mu A,~V_{\rm SDQ}$ =3V and $V_{\rm RS}$ = 0.8V. Note that $V_{\rm RS}$ is the voltage across the source resistor $R_{\rm s}.$ The value of the larger bias resistor, either $R_{\rm l}$ or $R_{\rm l}$ is to be 200 k $\Omega.$ Transistor parameter values are $K_{\rm p}$ = 100 $\mu A/$ V² and $V_{\rm TP}$ = –0.4 V . The conduction parameter, $K_{\rm p}$ may vary by ±5 percent.

(OR)

b) Design the cascode circuit shown below to meet the following specifications: $V_{\text{CE1}} = V_{\text{CE2}} = 2.5 \text{ V}, V_{\text{RE}} = 0.7 \text{ V}, I_{\text{C1}} \cong I_{\text{C2}} \cong 1 \text{mA}, \text{ and } I_{\text{R1}} \cong I_{\text{R2}} \cong I_{\text{R3}} = 0.10 \text{ mA}.$

